If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-9+4X=0
a = 1; b = 4; c = -9;
Δ = b2-4ac
Δ = 42-4·1·(-9)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{13}}{2*1}=\frac{-4-2\sqrt{13}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{13}}{2*1}=\frac{-4+2\sqrt{13}}{2} $
| 4.5x-11.25x^2=0 | | (-8m)-2=-10 | | 5x=1/128 | | (D^2+3D+2)y=0 | | -3/2=8/27=x | | 0=x^2-15x-25 | | 16a+14a-3=38 | | 9a3=9 | | 4x(x+6)=38 | | -7t^2+t-2=0 | | (x-3)^2=13 | | 6+a/2=a+4 | | (7x+1)^2=36 | | 6x^2+3x-13=0 | | x/2-5=(x-2)^2-9 | | 2^x+4^x=2 | | 5/(x+2)=0 | | 26x+10=0 | | 5x/6-17=3 | | 7⋅(x−4)=5⋅(x−2) | | x/2=(x-2)^2-9 | | (3^x)*(4^x)=1 | | 3(2+a)=4 | | x*x*x=0.05 | | x^2+75x-7500=0 | | 3^x*4^x=1 | | 3^n+5^n=0 | | 4(x+3)^2=74 | | 3735-49.8x=56x-840 | | 5(2x+8)=39 | | 3735-49.5x=56x-840 | | 3^x=87 |